BORON NITRIDE

PRODUCT IDENTIFICATION

CAS NO. 10043-11-5

BORON NITRIDE 

EINECS NO. 233-136-6
FORMULA BN
MOL WT. 24.82

H.S. CODE

2850.00
TOXICITY  
SYNONYMS PBN; pyrolytic boron nitride; BN;
Bornitrid (German); Nitruro de boro (Spanish); Nitrure de bore (French);
SMILES  

CLASSIFICATION

 

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE White powder
MELTING POINT 3000 C (sublimes)
BOILING POINT  
SPECIFIC GRAVITY 2.29
SOLUBILITY IN WATER

Insoluble

pH  
VAPOR DENSITY  

AUTOIGNITION

 

NFPA RATINGS

Health: 1 Flammability: 0 Reactivity: 0

REFRACTIVE INDEX

 

FLASH POINT Not considered to be a fire hazard
STABILITY Stable under ordinary conditions.

APPLICATIONS

Nitrides binary metal compounds with nitrogen. Nitrides are isoelectronic to carbon and can form hexagonal lattice similar to graphite and diamond in physical structure. They are used in hardening metal surfaces and as an abrasive agent for cutting and grinding applications. They are used for chemical and thermal resistance. Boron nitride is a binary compound of boron and nitrogen. It is one of the hardest materials. It is a white powder having high chemical and thermal stability and high electrical resistance. It is used to enhance thermal conductivity, dielectric strength and lubricating  in plastics, oils, greases and other industrial materials. Cosmetic grade can be used for skin cooking sensation due to good thermal conductivity.
SALES SPECIFICATION

CERAMIC GRADE

APPEARANCE

White powder
BN
98.0% min
MEAN PARTICLE SIZE

5 - 15 µm

BILK DENSITY

0.2 - 0.6 (g/cm3)

TRANSPORTATION
PACKING  
HAZARD CLASS Not regulated
UN NO.  
OTHER INFORMATION

European Hazard Symbols: , Risk Phrases: 36/37, Safety Phrases: 26-36

GENERAL DESCRIPTION OF BORON AND ITS COMPOUNDS

Boron is a nonmetallic element, group III in the periodic table. Symbol B; aomic number 5; atomic mass 10.811; melting point ca 2,300 C; sublimation point ca 2,550 C;  specific gravity 2.37 or 2.34; valence +3; electronic config. [He]2s22p1. There are two allotropes of boron; amorphous boron is a dark brown to black amorphous powder, but metal-like crystalline solid is an extremely hard (9.3 on Mohs' scale), black to silver-gray, brittle, lustrous and has a bad conductor in room temperatures. The specific gravities of amorphous and crystalline forms are 2.37 and 2.34 respectively. The crystalline form is far less reactive than the amorphous form. The amorphous powder is oxidized slowly in air at room temperature and ignites spontaneously at high temperatures to form an oxide but the crystalline form is oxidized only very slowly, even at higher temperatures. Boron is widely distributed in the form of borates but is never found in the elemental form in nature. The important commercial borate products are borax penta (or deca) hydrate, boron oxide, sodium perborate, boric acid and minerals are borax, colemanite, ulexite, tincal, kermite, and brines as well as ascharite, hydroboracite, datolite, tourmaline, etc. The simple way to prepare boron of amorphous powder form is the reduction of boron trioxide by heating with magnesium. Boric acid is produced mainly from borate ores containing sodium or calcium by the reaction with sulfuric acid in the presence of a hot aqueous boric acid liquor to recycle.

Major end uses for borates include;

  • FIBERGLASS AND GLASS : Boron fibers probide very high tensile strength and can be added to plastics to make a material that is stronger than steel yet lighter than aluminum. Boron is used primarily in fiberglass and boronsilicate glass which is the strong heat-resistant glass that contains a minimum of 5 percent boric oxide. The resistance to heat and chemical is attributable to the boric oxide which replace for sodium oxide in the structure of the glass, creating low thermal expansion. Replace for sodium oxide, Boric Oxide is a powerful base offering a high quality of heat and chemical resistance. Boric compouds are important components in optical glass industry to reduce thermal and mechanical shocks but to increase chemical resistance and durability.
  • CERAMICS : Boric compounds reduce significantly the melting point and can be used as an essential ingredient for the production of ceramic frits and borosilicate glazes. Boric compounds are used to control the coefficient of expansion to ensure that the glaze remains fixed with the body without crazing or distortion.
  • AGRICULTURE AND FERTILIZER: Boron is an essential micronutrient for plant growth. Boron fertilizers mixed with other compounds or NPK fertilizers are useful boron-deficient soils.
  • FLAME RETARDANT : Boron is an effective chemical flame retardant for an ample array of products. It is also used for wood, plywood, textile products, cotton, paper and cellulose.
  • CORROSION INHIBITOR : Different boric composition can be used as Corrosion Inhibitors and anti-freeze (mixed with Ethylene Glycol in automobile motor cooling systems), as well as in brewing, heat treating, hydraulic fluids, and treatment of metallic products.
  • WOOD PRESERVATIVES and PESTICIDES : Borates and Boric Acid are very effective in controlling and eliminating insects and fungi. Though they are not harmful to mammals, they are toxic against cockroaches, ants, scarabs, larvae, and other insects, resulting in manipulation at any location and environment.
  • METALLURGY : Boron is used as a sealing for non-ferrous metals and used as a deoxidizer and degasifier in metallurgy. Because it absorbs neutrons. It is used in the production of steel. Traces of Ferro boron in boric steel increase its strength. Bron eliminates impurities metallurgist systems, resulting in highly pure material to be used in electrical conductors especially.
  • PHARMACEUTICALS AND COSMETICS : Boric Acid is recognized for its application as a pH buffer and as a moderate antiseptic agent and emulsifier. It is a component of ointments, mouth-washes, eye-drops, bath salts, creams and shampoos. It can be used for skin cooking sensation due to good thermal conductivity. It is also known boron compounds made with all 10B isotope selectively destroy cancer cell.
  • NUCLEAR APPLICATIONS : Boron is used in the shielding material,  in neutron detection and in some control rods of nuclear reactors as it absorbs neutrons.